

DBK-003-2015026 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

June - 2022

Physics: P-502

(Electrodynamics & Spectroscopy) (New Course)

Faculty Code: 003

Subject Code: 2015026					
Time : $2\frac{1}{2}$ Hours] [Total Marks : 7]					
Instructions:		(1) Attempt any five questions.(2) Numbers of right side indicate marks.(3) Symbols have their usual meaning.			
1 (a)	Ansv	wer tl	ne following questions: (1 mark each)	4	
	(1)		rges are redistributed and atomic (or molecular) le is produced, such substance is called		
	(2)	elec	re are actually two principal mechanisms by which tric fields can distort the charge distribution of a ectric atom or molecule and .		
	(3)	Two and is we soon	o forces in atom, electrons-nucleus attractive force in opposite direction, the external field force (if it eaker than internal field) will become in equilibrium a. In such condition atoms is said to be polarized. e or False)		
	(4)		ole moment is proportional to the external field E e or False)		
(b)	If Hydrogen atom is placed in an electric field of 5×10^5 N/C and its polarizability is 7.34×10^{-30} C ² N/m. Find its dipole momentum.			2	
(c)	Explain force on dipole due to non-uniform external electric field.			3	
(d)	Disc	uss tl	ne physical interpretation of bound charge.	5	

2	(a)	Answer the following questions: (one mark each)	4
		(1) Define paramagnetic.(2) Torque on rectangular loop, when applied uniform	
		magnetic field is given by	
		(3) Magnetic dipole moment per unit volume is called	
		(4) Differential form of Ampere's law in Magnetized material is	
	(b)	Define linear media.	2
	(c)	Explain the magnetization of material.	3
	(d)	Give the physical interpretation of bound current.	5
3	(a)	Answer the following questions: (one mark each)	4
		(1) Write Ohm's law for electrodynamics.	
		(2) Electromotive force is given by	
		(3) Write flux rule for motional emf.	
		(4) The integral form of Ampere's law is	
	(b)	Find the self-inductance of a long solenoid having 'n'	2
		numbers of turn per unit length. The radius is r.	_
	(c)	Explain continuity equation in electrodynamics.	3
	(d)	Explain Poynting's theorem.	5
4	(a)	Answer the following questions: (one mark each)	4
		(1) Write Faraday's law in differential form.	
		(2) Write Ampere's law with Maxwel's correction.	
		(3) Write Poynting's vector formula.	
		(4) Write Lorentz's force law.	_
	(b)	A solenoid of radius 2 cm has self-inductance 100 mH. If current flowing through is 1A. Find the energy stored in	2
	()	magnetic field of solenoid.	2
	(c)	Discuss Maxwell's modification in Ampere's law.	3
	(d)	Discuss "Energy in magnetic field".	5
5	(a)	Answer the following questions: (one mark each)	4
		(1) What is wave?	
		(2) Complex wave function is given by	
		(3) $\left(\frac{\partial f}{\partial z}\right)_{z=0^{-}} = \left(\frac{\partial f}{\partial z}\right)_{z=0^{+}}$ is called for reflection and	
		transmission waves.	
		(4) What is transverse waves?	

	(b)	Explain complex notation for wave equation.	2				
	(c)	Deduce the equation for E and B in vacuum.					
	(d)	Formulate wave equation for stretched string.	5				
6	(a)	 Answer the following questions: (one mark each) (1) Wave equation for stretched string is given by (2) The wave number 'K' is given by (3) Angular frequency 'ω' is given by (4) In sinusoidal wave equation, δ is indicate the 	4				
	(b)	Amplitude A ₃ is given by $A_3 e^{i\delta_3} = A_1 e^{i\delta_1} + A_2 e^{i\delta_2}$. Determine A ₃ .	2				
	(c)	Discus polarization of wave.					
	(d)	Formulate wave equation for sinusoidal wave.	5				
7	(a)	Answer the following questions: (1 mark of each) (1) Write the names of two types of emission spectra. (2) The dark lines of Sun's absorption spectra is called	4				
		 (3) Frank Hertz's experiment gives confirmation that electron occupied energy level. (4) Bohr's theory of atomic model also predicts about the intensity of greaters being a first and the confirmation of predicts. 					
	(b)	intensity of spectral line. (True or False ?) Calculate the wavelength of light emitted by an atom, excited to higher state by applying 2V.	2				
	(c)	Explain continuous spectra.	3				
	(d)	Explain Bohr's theory. (Postulates only)	5				
8	(a)	Answer following objective questions: (1 mark of each) (1) To cover the complexity of spectra line, Uhlenbeck and Goudsmith extended the Somerfield model is known as	4				
		(2) Famous hypothesis of electron spin is put forward by					
		(3) The orbits having <i>l</i> values 0,1,2,3 is labelled as, and					
		(4) The projection of orbital quantum number <i>l</i> on magnetic field gives					
	(b)	Under uniform magnetic field of 4 Webers/meter ² ; find Δv for normal Zeeman splitting.	2				
	(c)	Explain Paschen-back effect.	3				
	(d)	Explain Frank-Hertz's experiment.	5				
DBI	K-003	-2015026] 3 [Contd	l				

9	(a)	Answer following questions: (1 mark of each) (1) Molecular spectra is discontinuous spectra. (True or False?)		
		(2) Electronics band spectra is falls on		
		$oxed{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}$		
		(3) $E_e \ll E_v \ll E_r$ (True or False?)		
		(4) In molecular spectra, vibrational energy is given by $E_v = $		
	(b)	In rotational spectrum of CO gas, the spacing is observed between the spectral line is 3.84 cm ⁻¹ . Calculate the moment of inertia of CO molecule.	2	
	(c)	Give the brief review on radiation source of experimental setup of Raman effect.		
	(d)	Explain pure rotational spectra.		
10	(a)	Answer the following questions: (1 mark of each)	4	
		(1) Frequency difference between incident radiation and scattered radiation from molecule is called .		
		(2) For Stokes lines, Δv is negative. (True / False)		
		(3) Write the range of intensity of Raman scattered light, with respect to intensity of incident light.		
		(4) On both side of exciting line in Raman spectra, we can observe equidistance lines, that is pure rotational spectra. (True/False)		
	(b)	Vibration transition occurs with energy change of	2	
		1.6×10^{-20} erg/mol, calculate the frequency of radiation.		
	(c)	Give the difference between Raman spectra and	3	
		Fluorescence spectra.		
	(d)	Discuss salient feature of Raman effect.		